3,253 research outputs found

    A new structure for comparing surface passivation materials of GaAs solar cells

    Get PDF
    The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described

    Coarse-grained, density dependent implicit solvent model reliably reproduces behavior of a model surfactant system

    Get PDF
    Density dependent, implicit solvent (DDIS) potentials, the generation of which has been described previously [ E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008) ; E. C. Allen and G. C. Rutledge, J. Chem. Phys. 130, 034904 (2009) ], are used in this work to examine the self-assembly of a model surfactant system. While the measurement of thermodynamic properties in simulations of solvated micelles requires large computational resources or specialized free energy calculations, the high degree of coarse-graining enabled by the DDIS algorithm allows for the measurement of critical micelle concentration and aggregation number distribution using single processor NVT simulations. In order to evaluate the transferability of potentials derived from the DDIS methodology, the potentials are derived from simulations of simple monomeric solutes and used in the surfactant system without modification. Despite the high degree of coarse graining and the simplicity of the fitting simulations, we demonstrate that the coarse-grained DDIS potentials generated by this method reliably reproduce key properties of the underlying surfactant system: the critical micelle concentration, and the average aggregation number. The success of the DDIS algorithm suggests its utility for more realistic surfactant models.United States. Dept. of Energy (Office of Science, Computational Science Graduate Fellowship Program)United States. Dept. of Energy (National Nuclear Security Administration, Contract No. DEFG02- 97ER25308

    Industry-Academic Partnerships – Benefit or Burden?

    Get PDF
    In an applied discipline such as agribusiness management, there are many opportunities for collaboration between academia and industry. This article highlights opportunities for industry-academic partnerships through research, sabbatical leaves, consulting, outreach, student enrichment activities, and industry advisory boards. The principal benefits and pitfalls associated with each type of collaboration are discussed along with tips for managing industry-academic partnerships.industry partnerships, industry collaboration, Industrial Organization, Teaching/Communication/Extension/Profession, Q10,

    Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains

    Get PDF
    Previously, we described a coarse-graining method for creating local density-dependent implicit solvent (DDIS) potentials that reproduce the radial distribution function (RDF) and solute excess chemical potential across a range of particle concentrations [ E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008) ]. In this work, we test the transferability of these potentials, derived from simulations of monomeric solute in monomeric solvent, to mixtures of solutes and to solute chains in the same monomeric solvent. For this purpose, “transferability” refers to the predictive capability of the potentials without additional optimization. We find that RDF transferability to mixtures is very good, while RDF errors in systems of chains increase linearly with chain length. Excess chemical potential transferability is good for mixtures at low solute concentration, chains, and chains of mixed composition; at higher solute concentrations in mixtures, chemical potential transferability fails due to the nature of the DDIS potentials, in which particle insertion directly affects the interaction potential. With these results, we demonstrate that DDIS potentials derived for pure solutes can be used effectively in the study of many important systems including those involving mixtures, chains, and chains of mixed composition in monomeric solvent.United States. Dept. of Energy (Computational Sciences Graduate Fellowship

    The fundamental problem of command : plan and compliance in a partially centralised economy

    Get PDF
    When a principal gives an order to an agent and advances resources for its implementation, the temptations for the agent to shirk or steal from the principal rather than comply constitute the fundamental problem of command. Historically, partially centralised command economies enforced compliance in various ways, assisted by nesting the fundamental problem of exchange within that of command. The Soviet economy provides some relevant data. The Soviet command system combined several enforcement mechanisms in an equilibrium that shifted as agents learned and each mechanism's comparative costs and benefits changed. When the conditions for an equilibrium disappeared, the system collapsed.Comparative Economic Studies (2005) 47, 296–314. doi:10.1057/palgrave.ces.810011

    Design and assembly sequence analysis of option 3 for CETF reference space station

    Get PDF
    A design and assembly sequence was conducted on one option of the Dual Keel Space Station examined by a NASA Critical Evaluation Task Force to establish viability of several variations of that option. A goal of the study was to produce and analyze technical data to support Task Force decisions to either examine particular Option 3 variations in more depth or eliminate them from further consideration. An analysis of the phasing assembly showed that use of an Expendable Launch Vehicle in conjunction with the Space Transportation System (STS) can accelerate the buildup of the Station and ease the STS launch rate constraints. The study also showed that use of an Orbital Maneuvering Vehicle on the first flight can significantly benefit Station assembly and, by performing Station subsystem functions, can alleviate the need for operational control and reboost systems during the early flights. In addition to launch and assembly sequencing, the study assessed stability and control, and analyzed node-packaging options and the effects of keel removal on the structural dynamics of the Station. Results of these analyses are presented and discussed

    Respiratory Depression in Young Prader Willi Syndrome Patients following Clonidine Provocation for Growth Hormone Secretion Testing

    Get PDF
    Objectives. To determine the sedative and respiratory effects of clonidine when used to evaluate growth hormone (GH) secretion in children with Prader Willi Syndrome (PWS). Methods. The study prospectively evaluated children with PWS who received clonidine (0.15 mg/m2) to assess GH responsiveness. Patients were studied up to four times over three years. Vital signs, oxygen saturation, and sedation level were recorded at baseline and every five minutes following clonidine. Changes between baseline and post-clonidine were evaluated using a repeated measurement analysis. Results. Sixty studies were performed on 17 patients, mean age 30.4 ± 15.0 months. The mean ± SD dose of clonidine was 0.074 ± 0.027 mg (5.3 ± 1.72 mcg/kg). All patients achieved a sedation score of 4 to 5 (drowsy to asleep). Mean declines in respiratory rate (7.5 ± 6.1 breaths/min; P < .001), and oxygen saturation (2.2 ± 2.0%; P < .001) occurred following clonidine. Five patients (29%) experienced oxygen saturations ≤94% on nine occasions. Three oxygen desaturations were accompanied by partial airway obstruction. Conclusions. Clonidine doses to assess GH secretion often exceed doses used for sedation and result in significant respiratory depression in some children with PWS. There was no association between oxygen desaturation and BMI
    corecore